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An exact solution of the randomly driven Korteweg—de Vries-Burgers equation is found and
its basic statistical properties are investigated. An approximate formula for the large-time-scale

behavior of the mean solution is evaluated.
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There is still an increasing amount of attention in the
propagation of nonlinear waves in randomly excited me-
dia. The interest is continuously stimulated by the re-
markable variety of applications in acoustics, hydrody-
namics, plasma physics as well as solid-state physics [1].
Unfortunately, analytical results are available only for the
simplest models. In the case of the Korteweg—de Vries
equation with the external time-dependent white noise

Ut + UU::: + IBU:::I::: = .f(t) ’ (1)

the deformation of the one-soliton solution called the dif-
fusion of soliton was found by Wadati [2]. Also behavior
of multisoliton solutions in the presence of such a time-
dependent excitation was studied [3]. Similar investiga-
tions were performed for the stochastic Burgers equation
[4-7)

U+ UU, — pUze = f(t) ) (2)

and a damping of the shock-wave solution was observed.
More general Gaussian excitations as, e.g., colored noise
were also considered [6,7].

In both cases we have the completely integrable sys-
tems [8] disturbed by the spatially-independent random
external noise. In this paper I generalize the above-
mentioned results to the case of a nonintegrable system
investigating the following stochastic KdV-Burgers equa-
tion:

U +UU; + ﬂUzmz - “U:u: = f(t) . (3)

The model describes randomly driven nonlinear waves
in both dispersive and dissipative media and is a natu-
ral extension of the previous cases. In spite of its sim-
plicity it seems to be a good approximation of various
multiple-components nonlinear systems (see [9] and ref-
erences therein). The KdV-Burgers equation does not
satisfy the Painlevé property [8] and does not possess any
nontrivial prolongation structure [10]. It can be solved
neither by the inverse scattering method [11] nor by the
Hopf-Cole transformation [12]. Nevertheless, some ana-
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lytical treatment of the influence of random force on the
propagation of nonlinear waves described by this equa-
tion is still possible. In the following, I find a formal
random solution corresponding to a stationary solution
of the unperturbed KdV-Burgers equation and discuss
its basic statistical properties.

An essential point is the possibility of reduction of the
above equation to the standard force-free KdV-Burgers
equation. This remarkable property is caused by the fact
that the noise f(t) does not depend on the space coordi-
nate. In the general case the noise can be both time and
space dependent but the corresponding stochastic KdV-
Burgers equation is too complicated to be investigated
analytically, e.g., the possibility of a chaotic behavior
should be taken into account. Straightforward calcula-
tions show that the following transformations (cf. [2,7]
and references therein)

V(zt) = Uz, t) - W(t) , (4a)
W= [ fe)at (4b)
c=z—9(t), (4c)

w0 = [ Wy, (40)

lead to the homogeneous KdV-Burgers equation for
V(z,t)

i+ VYV, +ﬁ‘/zzz_/‘lf‘/zz=0 (5)

We assume that the noise f(t) is a Gaussian stochastic
process with zero mean (f(t)) = 0 and a given correlation
function

(R f(E)) = K4 (t,1) - (6)

Under these assumptions, stochastic integrals in (4) are
well definite. In this case, also W (¢) and % (t) are Gaus-
sian stochastic processes with zero means. We also have

o3 (t) = (¥*(2)) = /0 A (W(s)W(s"))dsds',  (7)
where
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(W(s)W(s')) = A | /0 " K (u ) dudu. (8)

It is known that the homogeneous KdV-Burgers equa-
tion must possess a stationary solution (see, e.g., [13,14]).
I use in this paper an explicit form of such a solution
found rather recently [15] by means of the interesting
combination of the Hirota method [16] and the singular
manifold expansion [17]. It can also be obtained from the
stationary solution of the Fischer equation [18]. Chang-
ing denotations, we rewrite the solution as follows:

Viz,t) = guk + 30k sechzg (z — g,ukt)

6 k 6
5/,Lk tanh 3 (z 5,ukt) , (9)
where k = :t%. Let us note that the above solution is
an interesting linear superposition of a “solitary wave”
which resembles the one-soliton solution of the KdV
equation and a “shock wave” resembling the stationary
solution of the Burgers equation. Although it is only a
particular solution corresponding to a special initial con-
dition, it enables us to see in more detail what happens
during the randomly driven evolution.
Making use of transformations (4) we immediately de-
rive an exact expression for the random field obeying our
stochastic KdV-Burgers equation

Uz, t) =WI(t) + guk + 30k? sech2g£ — guk tanh g—f ,
(10)

where £ = 2 — Eukt — 1(t) is sometimes called the “fuc-
tuating coordinate” [3].

The above equation depends on the time-varying ran-
dom parameter determined by the external noise and we
should perform the averaging with respect to different re-
alizations of the noise to get physically interpretable re-
sults. It is seen that the randemized solution (10) forms
the nonlinear transformation of the noise. Fortunately,
due to the Gaussian character of the noise f(t), we can
find the mean solution via direct integration of this equa-
tion with respect to the appropriate Gaussian probabilis-
tic measure

(U(z,1)) =

Wy + ——— [ Vi
\/2mal(t) J-oo

X exp (——L) dy . (11)

203, (t)

Let us assume for simplicity that the random external
force f(t) is the Gaussian white noise

Kg(t,t') =2Dé(t' —t), D>0. (12)
In this case we have
ol (t) = (m?(t)) = 2Dt® . (13)

Using the fact that (W (t)) = 0 and some approximations
developed in [6,7] we obtain the following large-time-scale
behavior of the mean solution:

W) = 2o eyl + 2 —eni(a)] (19

where
erf(z) = % /02 exp(—z?)dz | (15)

is the well known error function [19] and

z= v3 (z — Sukt) . (16)

~ 2vD¢3

For sufficiently large time, this expression correctly de-
scribes the deformation of the stationary solution of the
KdV-Burgers equation during its propagation in ran-
domly excited media. The observed behavior is a su-
perposition of the effect called the diffusion of soliton
and a kind of damping of the shock wave which was first
correctly described in [5] and independently in [6,7].

In summary, propagation of the stationary solution of
the KdV-Burgers equation in randomly excited media
was studied. Although the model equation is not com-
pletely integrable it was possible to find the analytical
solution. It can be used for the verification of various ap-
proximate techniques. The approximate formula describ-
ing large-time-scale behavior of the averaged solution is
also evaluated. The analytical treatment was possible
due to the existence of transformations which replace the
forced equation by the standard one in new coordinates.
These transformations have a long and interesting history
[20] and some related problems will be studied elsewhere.
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